Cost-Guided Cardinality Estimation:
Focus Where 1t Matters

Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, Mohammad Alizadeh
MIT CSAIL
{pnegi, rcmarcus, hongzi, tatbul, kraska, alizadeh} @mit.edu

Abstract—The increasing prevalence of machine learning
techniques has resulted in many works attempting to replace
cardinality estimation, a core component of relational query
optimizers, with learned models. The majority of those works
have trained models to minimize the prediction error between
the model’s output for a particular query and the true cardinality
of that query. However, when cardinality estimators are used for
query optimization, not all cardinality estimates are equally im-
portant. We present cost-guided cardinality estimation, a technique
to train learned cardinality estimators that penalizes models
for errors that lead to sub-optimal query plans, and rewards
models for estimates that lead to high-quality query plans,
regardless of the accuracy of those estimates. In a preliminary
experimental study, we show that our technique can reduce
average query runtime by 1.7-2x. Surprisingly, models trained
with our approach achieve this increase in query performance
while having higher prediction error than models trained without
our approach, suggesting that prediction error for cardinalities
is not necessarily the correct metric to optimize.

I. INTRODUCTION

Cardinality estimation, the problem of predicting the selec-
tivity of a query, is a core component of query optimizers.
A cardinality estimator, combined with a cost model, is used
to predict the cost of different query plans and search for the
best one. Traditionally, query optimizers have relied on simple
histogram-based cardinality estimators. These estimators make
strong assumptions about the underlying data, like attribute
value independence and uniformity. As a result, they perform
poorly on queries that do not satisfy these assumptions. In
fact, past work suggests that most failures in query optimizers
are due to poor cardinality estimates [1].

A flurry of recent work applies machine learning techniques
to improve cardinality estimation [2-6]. A majority of these
works train models to predict cardinality by minimizing the
model’s prediction errors - such as the QError [7]. However,
not all predictions are equally important: it is possible that a
small misprediction could cause an optimizer to select a slow
join order, and it is also possible that a large misprediction
has no impact on a query plan. Motivated by this observation,
in this paper we ask: Is it possible to optimize a cardinality
estimator for query performance, rather than prediction error?

We propose a new technique, called cost-guided cardinality
estimation, which, at training time, emphasizes predictions that
matter most to query plans. Our method relies on a new metric,
Plan-Error, that captures the impact of cardinality estimates
on the optimized plans generated by a DBMS. To train
the cardinality estimator, we sample queries based on their

Plan-Error, giving larger weight to queries for which better
cardinality predictions would improve the query plan the most.
Our hypothesis is that this approach can use limited model
capacity more efficiently, resulting in cardinalty estimators that
increase the final quality of the resulting query plans. Our
approach is general and can be used to train any learning-
based cardinality estimator.

We apply our approach to two cardinality estimation mod-
els [4, 5]. When compared against an identical model trained
without cost-guided learning, our approach improves resulting
query runtimes by nearly a factor of two. Interestingly, the
models trained with cost-guided learning actually have much
higher prediction error, despite resulting in query plans that
are significantly faster. This highlights the fact that prediction
error alone is unsuitable to evaluate cardinality estimators.

In Section II, we describe the notion of Plan-Error and our
cost-guided learning approach. We present experimental re-
sults in Section III. Related works are presented in Section IV.
Concluding remarks and directions for future work are given
in Section V.

II. CoST-GUIDED LEARNING

Given a query, (), an estimator should output a cardinality
estimate for each of its sub-queries. Most cardinality esti-
mation work focus on producing estimators with low QError
(multiplicative error) [7]:

QError(y, §) = max(y/§,9/y), (D

where y and ¢ are the true and predicted cardinalities, respec-
tively. In many learned cardinality estimation works, QError
is directly minimized via gradient descent [5], decision tree
induction [8], or other means [3].

Moerkotte et al. theoretically justify why QError is a better
loss metric than relative error or absolute error for the purposes
of query optimization [7]. Intuitively, this is because small car-
dinality mis-estimates can multiply and become much larger
after joins. But this is an indirect way to achieve our goal:
minimize the runtime of the final query plan produced due to
the estimated cardinalities.

A. Plan-Error

Perhaps the most obvious way to train a cardinality estima-
tor that optimizes for query runtime, instead of just for QError,
is to give greater importance to those queries that have worse
runtimes due to the estimator’s predictions. However, this

would require frequently re-evaluating the queries throughout
training, which is prohibitively expensive. Therefore, we de-
fine Plan-Cost, which is a proxy for runtimes based on the
optimizer’s cost model.

For any query, let C be true cardinalities and C be estimated
cardinalities for all its sub-queries, and P be a particular query
plan. Here, the query plan consists of the join order, join
operators, and the indexes output by the query optimizer.

For an arbitrary cost model, such as the one in PostgreSQL,
a set of estimated cardinalities, C' and a query plan P, let
Cost (C, P) denote the cost of plan P. A query optimizer
uses a search algorithm to find the optimal query plan:

P*(C) = argmin Cost(C, P)
P

We define the plan cost PC for any set of cardinality
estimates C' as the cost of the optimal plan P*(C) with respect
to the true cardinalities C:

Plan-Cost (C) = Cost(C, P*(C)).

Notice that Plan-Cost(C) will be the the lowest possible cost
for a given query, since P*(C) is the optimal plan with respect
to the true cardinalities. Finally, we can define the Plan-Error
as the difference in plan cost with the estimated cardinalities
versus the true cardinalities:

Plan-Error = Plan-Cost(C) — Plan-Cost(C)

Unlike the runtime of a query plan [9, 10], the Plan-Error
gives us a metric that we can compute easily during training
- since all the true cardinalities would have already been
computed to generate the dataset before training. However,
unlike QError, the Plan-Error is not differentiable, since it uses
the dynamic programming algorithm of the query optimizer,
so we can not directly optimize for it during training using
gradient descent. We use an idea, inspired by Schaul et al.
[11], to focus our learner’s capacity on samples which are the
most important for reducing Plan-Error.

B. Prioritized Training with Plan-Error

We consider the standard setting of training a parametric
model (e.g., a neural network) with supervised learning using
batch stochastic gradient descent. We use QError as the loss
function similar to existing approaches. However, we sample
sub-queries used in each training epoch non-uniformly based
on the Plan-Error. Intuitively, if a particular query has a high
Plan-Error, we train on that query more frequently, causing the
model to adjust its weights to achieve a lower QError on that
query. On the other hand, if a particular query has a low Plan-
Error, we train on that query less frequently, de-emphasizing
the query and freeing up model capacity for other queries.

Let g; > 0 be the priority for each sample (sub-query) in the
training set. After every training epoch, the priority g; is set to
be the Plan-Error of the query which that sample belongs to.
To prevent sudden shifts in priorities causing unstable learning
behaviour, we use a moving average of the last four epochs
to calculate the priority.

During a training epoch, we compute the probability of
selecting sample 7 according to:

[0}

_ 4
Do i

Here, a controls how much weight we give to the priority
(and hence the Plan-Error). With o = 0, we get the usual
case, in which the training samples are chosen uniformly. In
other words, with @ = 0, our approach is exactly the same
as that used in previous work [4, 5]. Higher values of «
increase the impact of the Plan-Error. We manually tuned the
« parameter, and set it to 2 for all our experiments.

P(i)

III. EXPERIMENTS

In this section, we present preliminary experimental results
demonstrating the efficacy of our method on the MSCN
model [5] and the FCNN model [4]. We additionally introduce
a new query dataset specifically tailored to evaluating learned
cardinality estimators.

Dataset We created a new set of queries [12] for the purpose
of evaluating various cardinality estimators by their effect on
query performance. It is based on ten templates, and contains
8746 unique queries, with almost three million sub-queries.
We required such a large scale dataset for these evaluations
to address the following limitations in the queries used in
previous work [5, 6].

o Number of tables: “JOB-Light”, the query set used by
Kipf et al. [5], only used joins with upto 4 tables. Ortiz
et al. generated workloads with joins of upto 6 tables [6].
In contrast, our workload contains ten templates, with the
number of tables ranging from 5 to 16.

o Number of samples per template: Our dataset contains
templates in the style of JOB, with relevant real world
interpretations (i.e., they are not just random join graphs),
but it uses an automated method [12] to generate the
predicate filters, which lets us create hundreds of samples
per template class.

Due to computational constraints for collecting ground truth
data, we exclude cross-joins when evaluating any of the
classifiers. Table 1 summarizes the key properties of each of
the templates in this dataset. More details about the query
generation process can be found at our github page [12].

Featurization Here, we briefly explain the featurization
scheme used for each classifier.

o Query structure As described by Kipf et al., [5], each
sample (sub-query) is mapped to three input vectors: T
(one-hot vector for the tables in the query), J; (one hot
vector for the joins in the query), and P,, which is a
mapping of all the predicates in a query to a feature
vector.

o Heuristics Dutt et al., used heuristic features, such as
cardinality estimates from a traditional optimizer to dras-
tically improve performance [4]. Thus, for each query
and predicate, we provide the cardinality estimate from
PostgreSQL for it as input to the neural network.

Template | Samples | Tables | Sub-queries | Optimal Plans
la 3000 9 107 624

2a,b,c 1686 11 290 787

3a 1383 10 230 117

4a 516 6 37 10

Sa 1014 10 219 101

6a 465 14 1413 203

Ta 167 16 3120 115

8a 515 12 469 251

TABLE I: Samples refers to the number of query instances of
a template. Sub-queries refers to the number of smaller queries
in a single query instance (excluding cross-joins). Optimal
Plans refers to the number of unique query plans generated
for all sample instances when true cardinalities are provided
to the PostgreSQL optimizer.

o Query predicates For range predicates over continuous
columns, we normalize them to [0, 1] using the minimum
and maximum values, which has been established as
a standard technique [5]. For IN clauses over discrete
columns, we indicate the presence or absence of the
predicate as a 1 or 0. In both cases, we also provide
the PostgreSQL selectivity estimate as a feature.

Models We use the default estimates from PostgreSQL and
the true cardinalities as baselines for each of our evaluation
metrics. The training technique we propose should benefit any
gradient-descent based learning model, thus we evaluate two
of the state of the art neural network architectures proposed
for cardinality estimation.

o FCNN: This is an extension of the architecture proposed
by Dutt et al. [4] that concatenates the individual feature
vectors, Ty, Jg4, and P, into an input vector, and uses a
two hidden-layer fully connected neural network.

e MSCN: Each of the feature vectors, Ty, Jg, and P,, gets
its own module: a one hidden layer fully connected neural
network, which is then pooled together into a combined,
one-hidden layer, fully connected neural network. For
more details, see Kipf et al., [5].

We use hidden layers of size 100 for both the FCNN and
MSCN models. We believe that other learned models, such as
the ones proposed by Ortiz et al., and Woltmann et al., [2, 6],
should also benefit from our approach, and plan to evaluate
them in future work.

Methodology We use PostgreSQL for all our experiments,
using its exhaustive search algorithm and default cost model
to compute the Plan-Error. The evaluation setup and code
can be found at our github page [12]. All the results here
are presented on the test set, which comprises of half of all
the queries in the data set. Each model is trained for twenty
epochs. In each epoch of training, the models see almost
1.5 million sub-queries in randomized order — in the non-
prioritized case, this would involve seeing every sub-query in
the training set. In the prioritized versions, sub-queries will be
sampled in a weighted manner, so not every sub-query may
be seen in an epoch. For the runtime experiments, we used an

1.0 .
= | s L
c
/ :
E 0.6 g 20
e 0.4 FCNN g L
// FCNN (with:priority k=
0.2 ==="PostgreSQL njc 201
- True
0.0 o
0 20 40 60 80 :
\UENR o
Runtime (seconds) pos@‘esﬁo pr\m\’t‘%)(\o(\w
(a) FCNN model
1.0 .

.

(=)}
o

0.8 /
0.6
0.4 / ——__MSCN

// MSCN (withipriority
0.2 ==="PostgreSQL
—— True

CDF

N
o

Runtime (seconds)
EY
o

0.0

0 20 40 60 80 0

Runtime (seconds)

00t - pro b

(b) MSCN model

Fig. 1: Cost-guided learning improves the actual query execu-
tion time under different models. The bar plots show the mean
of query runtimes and the error bar indicate 95 percentile.

Amazon EC2 instance with a NVME SSD hard drive, and 8GB
RAM. To reduce variance, we disabled the parallel operators
in PostgreSQL. Two queries in the same template may have
the same optimal plan. To reduce the run time overhead, we
selected a representative set of 1112 queries of the test set to
execute, such that each optimal plan was seen once.

Runtime In Figures la and 1b we look at the cumulative
distribution function of the runtimes. When true cardinalities
are provided, no query runs for over 50 seconds, while in
any other case, there is a long tail of much worse perform-
ing queries. With the cost-guided training method, there are
significantly fewer queries that last over 50 seconds — thus
our training method helps in improving the tail performance.
This general trend appears to hold for both the FCNN and
MSCN architectures. When using cost-guided learning, query
performance improves significantly, both in the mean and
the tails. In particular, the mean query runtime improves
by 1.66x for MSCN and 2x for FCNN. The gains at the
tail are even larger: for the 10 worst queries (not shown
in the figure), there is a more than 6x improvement in
runtime. It is also interesting to note that even though each
of the models improves the QError over PostgreSQL by many
orders of magnitude, in this workload, neither of the models
trained without prioritization led to much improvements over
PostgreSQL in terms of runtime.

QError and Plan-Error In Figures 2a and 2b we look at
the mean of each of the cost criterion we have considered.
Surprisingly, models trained with prioritization do much worse
in terms of QError, but better on the query optimization goals
we care about: improving the Plan-Error and average runtimes

le2 le6

30
5 25
=25
4 2.0 2
. 5 g
S 3 = a
5 G 13 215
o c [
2 210 £
5
1 0.5 = 5
0 0.0

wlo prionty priority wlo prionty priority alo priofity griority

(a) FCNN model

le2 le6
2.0 125 _ »
s 100 ?é 2
s 5075 R
510 é 0.50 ,% 10
0:3 0.25 25
0.0

wlo pr'\ont‘l pﬂor'\t\l wlo p('\or'\t‘l pﬁgr'\l\l wlo pﬂor'\t\/ p(\or'\t\/

(b) MSCN model

Fig. 2: Comparison of the QFError, Plan-Error, and Runtime for the FCNN and the MSCN models

by almost a factor of two. The more structured MSCN model
also seems to do better than FCNN, but when we train them
with prioritization, their performance on the Plan-Error and
runtimes seem to converge to similar values.

IV. RELATED WORK

Learned query optimization Query optimization has a long
research history [13]. Our work most closely follows the
setup used by Ortiz et al., [6]. In comparison, they measured
the impact of cardinality estimates on runtimes on a smaller
data set of queries, but they did not use any signal besides
the estimation errors to train their models. We additionally
introduced the notion of Plan-Error, which lets us utilize the
query performance in improving our cardinality estimator.
Besides this, Kipf et al., Leis et al.,, and Dutt et al.,, were
other works which introduced central ideas on top of which
we further develop our work [4, 5, 14].

Neural networks Using non-uniform weights to select items
while training has seen applications in various Machine Learn-
ing domains. In Reinforcement Learning, various prioritization
schemes for selecting more useful training samples from a
replay buffer have been proposed [15, 16]. In Supervised
Learning, assigning higher priorities to harder tasks was found
to be helpful in multi-task learning systems [17], or when the
number of samples from each class are not balanced, such as
in heartbeat detection models [18].

V. CONCLUSIONS AND FUTURE WORK

We introduced cost-guided learning for cardinality estima-
tion, a technique that helps learned cardinality estimation mod-
els “focus” on predictions that have the largest impact on query
plans. Experimentally, we show that our cost-guided approach
can improve average query runtimes by nearly a factor of two.
Surprisingly, our approach resulted in neural networks with
increased query performance, despite having lower cardinality
prediction accuracy. This suggests that directly minimizing
prediction error is not a good training regime for learned
cardinality estimators.

In future work, we plan to expand our experimental study to
include more recent cardinality estimation models, as well as
measuring training time and investigating trends in the Plan-
Error metric. There are also several hyper-parameters related

to prioritization and training that we have yet to fully evaluate.
We also plan on investigating approximate query processing
to more quickly gather training data for learned estimators.

ACKNOWLEDGEMENT

This research was supported by Intel, Google and Microsoft
as part of the MIT Data Systems and Al Lab (DSAIL), and
NSF grant CNS-1751009.

REFERENCES

[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann, “How
good are query optimizers, really?” Proceedings of the VLDB Endowment, vol. 9,
no. 3, pp. 204-215, 2015.

[2] L. Woltmann, C. Hartmann, M. Thiele, D. Habich, and W. Lehner, “Cardinal-
ity estimation with local deep learning models,” in Proceedings of the Second
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, 2019, pp. 1-8.

[3] Y. Park, S. Zhong, and B. Mozafari, “Quicksel: Quick selectivity learning with
mixture models,” arXiv preprint arXiv:1812.10568, 2018.

[4] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri,
“Selectivity estimation for range predicates using lightweight models,” Proceedings
of the VLDB Endowment, vol. 12, no. 9, pp. 1044-1057, 2019.

[5] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper, “Learned
cardinalities: Estimating correlated joins with deep learning,” arXiv preprint
arXiv:1809.00677, 2018.

[6] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “An empirical analysis of
deep learning for cardinality estimation,” arXiv preprint arXiv:1905.06425, 2019.

[7]1 G. Moerkotte, T. Neumann, and G. Steidl, “Preventing bad plans by bounding the
impact of cardinality estimation errors,” Proceedings of the VLDB Endowment,
vol. 2, no. 1, pp. 982-993, 2009.

[8] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and S. Rao, “Towards
a learning optimizer for shared clouds,” Proceedings of the VLDB Endowment,
vol. 12, no. 3, pp. 210-222, Nov. 2018.

[9] R. Marcus and O. Papaemmanouil, “Towards a hands-free query optimizer through
deep learning,” CIDR, 2019.

[10] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,
and N. Tatbul, “Neo: A learned query optimizer,” Proceedings of the VLDB
Endowment, vol. 12, no. 11, pp. 1705-1718, 2019.

[11] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
arXiv preprint arXiv:1511.05952, 2015.

[12] P. Negi and R. Marcus. (2020) Cardinality estimation dataset. https://github.com/
parimarjan/learned-cardinalities. [Online;].

[13] P. G. Selinger et al., “Access Path Selection in a Relational Database Management
System,” in SIGMOD ’79.

[14] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann, “Cardinality
estimation done right: Index-based join sampling.” in CIDR, 2017.

[15] J. Zhai, Q. Liu, Z. Zhang, S. Zhong, H. Zhu, P. Zhang, and C. Sun, “Deep Q-
Learning with Prioritized Sampling,” in Neural Information Processing, ser. Lecture
Notes in Computer Science, A. Hirose, S. Ozawa, K. Doya, K. Ikeda, M. Lee, and
D. Liu, Eds. Cham: Springer International Publishing, 2016, pp. 13-22.

[16] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and
D. Silver, “Distributed Prioritized Experience Replay,” arXiv:1803.00933 [cs], Mar.
2018.

[17]1 M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic Task
Prioritization for Multitask Learning,” in Proceedings of the European Conference
on Computer Vision (ECCV), ser. ECCV 18, 2018, pp. 270-287.

[18] A. Sellami and H. Hwang, “A robust deep convolutional neural network with batch-
weighted loss for heartbeat classification,” Expert Systems with Applications, vol.
122, pp. 75-84, May 2019.

