
A ADDITIONAL MICROBENCHMARKS
A.1 Inconsistent Features.
We showed the examples above in a simple setting. Similar spurious
correlates can be observed for joins, and correlation e�ects from
di�erent tables. But joins also introduce another major challenge
for workload shifts: the features in the new workload can be in-
consistent with features from the training regime. This is because
the two keys in a join refer to the same semantic column. Past
featurization approaches, such as sample bitmaps, treat these as
independent columns.
Setup.We consider two tables, primary, and foreign, where primary
is a table with 10 unique ?A8<0A~ .83 values, and 5 >A486=.?83 is
a foreign key reference to ?A8<0A~ .83 . 5 >A486= has 30 values, be-
cause several ?83 values will be repeated. The number of repetitions
of ?83 follows a Zipf distribution with 0 = 1.1, so the repetitions
range from 1 to a few hundred.

Figure 20 presents query templates showing a workload drift,
and the result of MSCN and Robust-MSCN model trained on the
�rst template. The �lters in the new template would be ignored
by the MSCN model since it was not seen in training; this leads to
a clear degradation of performance in the new template. Robust-
MSCN recognizes that these two �lters are on an equivalent column,
and creates the same uni�ed bitmap representation for both these
�lters.

A.2 Analyzing Performance on Query Plans.
Workload drift is de�ned precisely in §4.1, and our main experi-
ments in Section 6 explore several di�erences between the train-
ing and evaluation (testing) queries. Here we will use a carefully
selected training / evaluation query set where it is possible to un-
derstand exactly what is being learned by the query driven model,
and develop intuition about our proposed training framework.
Training / Evaluation workload. We take two templates in CEB
that are very similar to each other — one has �lters on the column
keyword.keyword (template 2b), and one doesn’t (template 2a).
Each template has a few hundred queries, with �lters on several
other columns which are generated using the same rules for both
the templates. The join graph for queries from this template is
shown in Figure 19a. The goal of a cardinality estimation model is
to estimate cardinalities of each subplan, i.e. join query involving a
subset of the tables in the full query, which are then used by the
query optimizer to �nd the join order to execute the query. There
are 290 such subplan estimates in this template.
E�ect of the di�erent �lter. Intuitively, the training workload
and the evaluation workload are very close to each other since
almost all the �lters are from the same distribution. There is an
additional �lter on the table ‘keyword’ in the evaluation queries.
This selects for titles with particular keywords, such as ‘marvel’, or
‘superheroes’. Any subplan that involves ‘keyword’ will naturally
get smaller in the evaluation queries. This represents a consistent
change from the training workload in all the queries from the new
template. Note that the data features — PostgreSQL estimates of
the cardinalities — will re�ect this change: i.e., the estimate for any
subplan with a �lter on keyword will have lower cardinality than
the estimate for the same subplan without a �lter on keyword.

MSCN model is brittle. On new queries from 2b, the training
template, MSCN outperforms PostgreSQL. However, on the unseen
template, this same MSCN model has a lot of variance across three
runs — going from being similar to PostgreSQL to being many times
worse than PostgreSQL.
Robust-MSCNmodel stably improves in both scenarios.Robust-
MSCN uses the same training data and features as the MSCNmodel,
but is trained with the query masking technique described in §4.2.
Intuitively, it puts more importance on the data features while train-
ing. Across all three runs, it improves clearly over PostgreSQL on
both the 2b (training template), and 2a (workload drift template).
How di�erent are the MSCN and Robust-MSCN models? We
apply interpretablity techniques developed to understand what a
deep neural network learns to the MSCN and Robust-MSCN model,
and �nd that they use the input features very di�erently. We use
the integrated gradients algorithm [36] implemented in the Captum
library [19]. For a given input, the algorithm considers a neural
network’s gradient activations for several inputs that interpolate
from all zeros to the actual input. Then, it analyzes the gradients to
quantify how important each feature was for the model’s observed
output. We show this analysis for an example subplan of a query
from the unseen template; the importance of the input features for
the MSCN model is shown in Figure 19c, and the importance of
features for the Robust-MSCN model in Figure 19d.

This gives us insight into what the two models learned — and
we �nd that they are actually quite di�erent despite having the
same training workload and input features. With the query masking
approach, the importance for the PostgreSQL estimate is the highest
— i.e., it relies more on that feature. In the standard approach, it
relies more on the query features, such as the tables and joins, which
is less robust when the evaluation workload changes. Importance
attributions over other subplans also show the same pattern. As
we discussed above, the e�ect of the workload drift in this example
is coarsely captured by the lower DBMS estimates — and relying
more on this feature lets the Robust-MSCN model adapt better to
this change. At the same time, the Robust-MSCN model clearly
improves over PostgreSQL — thus, it is e�ectively utilizing the
information it learned from the training workload, and not just
using PostgreSQL estimates.

B ADDITIONAL EXPERIMENTS
B.1 Job-Light experiments
Analyzing JOBLight-train Q-Errors. Even though we see consis-
tent improvements over PostgreSQL in Q-Errors, typically there is
still a long tail of Q-Errors. This is expected: there are new tables,
and new join graphs in these workloads that were not in JOBLight-
train; Figure 21a shows that the Q-Errors are much worse if no
table in the subplan query is present in JOBLight-train; But, when
one or more tables from the training workload are present, the
Q-Errors improve. This suggests that the model is learning to incor-
porate information from the simple JOBLight-train workload in a
sensible way over more complex queries. This is particularly impor-
tant in JOB queries because several JOB queries have very extreme
�lters, for instance: ‘17f.sql’ has ‘n.name LIKE "%B%"‘, or ‘6e.sql’
has ‘n.name LIKE "%Downey%Robert%"‘. JOBLight-train contains



(a) Join graph for all queries. (b) Query performance. (c) MSCN’s importance. (d) Robust-MSCN’s importance.

Figure 19: The MSCN and Robust-MSCN model trained on CEB template 2b, and evaluated on unseen queries from 2b or template 2a, that
only di�ers by one �lter on column, keyword, highlighted in red. (b) Shows the runtime performance of baselines, MSCN and Robust-MSCN
models. (c-d) Shows the importance of each feature to each model’s output when applied on an example subplan.

Figure 20: [ Simple example of workload drift leading to
inconsistent features because of a join.]

(a) Robust-MSCN Q-Errors. (b) Simple vs. complex �lters.

Figure 21: Exploring where Robust-MSCN trained on
JOBLight-train improves.

(a) JOBLight-train. (b) SimpleGen. (c) Learning curves.

Figure 22: Distribution of cardinalities in JOB-light, and
another synthetically generated workload, SimpleGen. (c)
compares the relative plan cost of the Robust-MSCN model
as its trained on JOBLight-train or SimpleGen.

thousands of queries with �lters on cast_info.person_id, thus, it
could learn to correct the DBMS estimate upward for �lters that

select a large amount of table, or correct the estimate downward
for �lters that select for just one movie or actor.
What doesn’t improve using just JOBLight-train queries?
CEB has many more automatically generated queries than JOB, and
samples �lters based on their correlations across tables; therefore,
it has fewer such extreme �lters, which explains why we see much
less improvement on it when we train on the simple JOBLight-train.
Figure 21b shows that we see no improvement over a subset of the
more complex regex templates on CEB, and a slight improvement
over simpler templates that involve categorical �lters over attributes
such as ‘genre’, ‘language’ etc.
Importance of training workload’s smooth cardinality distri-
bution. We compare the performance of the Robust-MSCN model
trained on two di�erent workloads that are super�cially similar:
JOBLight-train, and a synthetic query generator used in [14] (Sim-
pleGen) that also has joins only up to 3 tables. We �nd that the
Robust-MSCN model trained on JOBLight-train does signi�cantly
better (Figure 22c). Figure 22 shows the true cardinalities of all
queries that involve the table ‘title’ in the two workloads. This
suggests that the important thing to learn robust models is to have
a workload sampling process that is smooth (i.e., covers a lot of
points in the space, rather than just a few discrete points that could
be memorized). This ensures that the model will need to learn a
smooth and continuous function that should generalize to dynamic
scenarios better.

B.2 Flow-Loss comparison.
In §2, we discussed the trade-o�s between Q-Error or Flow-Loss as
the loss function. Figure 23 shows the runtime performance on JOB
from training MSCN or Robust-MSCN on CEB using Flow-Loss.
Robust-MSCN is complementary to Flow-Loss. The standard
MSCN model also improves over PostgreSQL when trained on CEB;
recall from Figure 10 that MSCN with Q-Error had actually got
worse. Thus, Flow-Loss also improves robustness to workload drift
when the cost model is well tuned. However, using the Robust-
MSCN model with Flow-Loss improves the performance further —
showing that these are complementary techniques.



Figure 23: Total latency on JOB for models trained with FlowLoss
instead of Q-Error.

Figure 24: Comparing MS-SQL vs PostgreSQL estimates on
CEB templates.

Flow-Loss does not work well without complex query work-
loads. Flow-Loss optimizes for an approximate plan cost; JOBLight-
train contains very simple queries, and thus, there are not many
query plans. So a Flow-Loss trained model may not be able to learn
much there — and its performance would be unpredictable.

B.3 MS-SQL vs PostgreSQL comparison
Figure 24 compares MS-SQL vs. PostgreSQL estimates on CEB
templates. In the experiments, we showed that overall, PostgreSQL
estimates are worse, but there is still variance among the templates,
including a few where PostgreSQL is better than MS-SQL as well.
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